第112节(1 / 4)

投票推荐 加入书签 留言反馈

  等屏风撤下,卢博士有些洋洋得意地扬了扬下巴,像是把自己的宝贝展示给大家看一般。
  这是他偶然淘到了一本失传已久的古书上看到题目,当时一看,便觉精妙无比,当下就想把这个题目加以改动,放入考核之中。
  果不其然,他这题目一露,众人脸色浮现一丝惊诧,就连先前通过“易”和“中”的范明成和靳相君也忽地皱眉,陷入沉思。
  虽他二人因为各种原因没选“难”,但也对着题目很是期待。
  今次一看,倒是真把两人难着了。
  更别说,在场好些对“数”本就不算精通之监生。
  不过,这题就连精通“数”的白景书,都微微挑了挑眉,同身旁的季斐道。
  “确实能称得上是难题。”
  但在黎青颜看来,这题也……
  太简单了吧。
  题目是这样的——
  “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问最小物几何?”
  此题黎青颜见过,原题出自《孙子算经》。
  翻译成现代的意思就是——
  有一个整数,它除以3会余2、除以5会余3、除以7会余2,求这个整数的最小值。
  原题没有求最小值,想来卢博士是想要一个具体的数,才加上去的。
  黎青颜如果用现代的方法来做,就是列几个方程式的事。
  假定整数为n。
  则:
  n=3x 2
  n=5y 3
  n=7z 2
  再加上卢博士求这个整数的最小值,三个方程一解,就能知道这个整数是23。
  而《孙子算经》中没有求最小值的答案虽然也给的是23,但在后世看来是不准确的,准确值应该是“23 (3*5*7)*m”。
  当然,孙子算经这题数字给的不难,可以试算出来,不过卢博士既然出这个题,肯定要解法,不是你说出一个数就行了的。
  而这题的解法,《孙子算经》里提过简单版,但在之后的《数书九章·大衍求一术》中有系统解法,而且是中国古代数学史上另一伟大的成就——
  中国剩余定理。
  是数论四大定理之一。
  虽不若“勾股定理”出名,但确实也是古代数学史上,又一伟大的成就。
  黎青颜心头默默想着剩余定理的历史,眼里划过一丝了然,怪不得要把它放在“难”这一项来。 ↑返回顶部↑

章节目录