第112节(3 / 4)

投票推荐 加入书签 留言反馈

  那我们就一个一个条件分解开来。
  先求在假设其中两个条件能被整除的情况下,除以另外一个条件余1的数。
  第一个数能同时被5和7整除,但除以3余1,就是70。
  第二个数能同时被3和7整除,但除以5余1,就是21。
  第三个数能同时被3和5整除,但除以7余1,就是15。
  简单点说,就是除以3余多少个1,就加上多少个70,除以5余多少个1,就加上多少个21,除以7余多少个1,就加上多少个15。
  再回到题目条件“除以3会余2、除以5会余3、除以7会余2”。
  那么(70 70),(21 21 21),(15 15)。
  便会得出140,63,30三个数,三个数再相加,相当于三个条件相加,便能得“233”,也就是233这个数同时满足这三个条件。
  但因为求最小值,用“233”减去“3*5*7”乘以一个倍数,却少于“233”的最大值,即“3*5*7*2=210”,233减去210,便能得23。
  《孙子算经》里的方法,用古代数学的思维去理解其实是很繁琐的,但确实在当时那么艰难的数学大环境下,还能得出这样厉害的算法结论,古人的智慧,亦不可小觑。
  黎青颜一口气说完,怕文言文太短,还将自己的大白话,也转成文言文解释了一通。
  说得可以是难得通俗易通。
  卢博士一脸明显被噎着的表情就可以看出来。
  更别说周遭监生,听着不住地点头。
  原来这么样就可以解的啊。
  不过,这其中,隐隐又有几个人表情大有不同。
  范明成是一脸不服气,只觉黎青颜先前肯定在哪看过类似的题目,不然怎么可能这么短的时间内完成。
  虽然黎青颜知道这题,但即使不看原题,她也知道怎么解答,更别说,为了套用古代思维解答,费死她劲儿去想怎么往古代数学思维靠,别说出太超前的理论。
  论拥有现代的数学思维的黎青颜的烦恼。
  而靳相君则是一脸崇拜,只觉黎青颜何止是放在大燕朝是“盛京第一才子”,放在她所在的国土,早就是“天下第一才子”了。
  当然,以靳相君对喜欢的人的占有欲,黎青颜如此厉害的一面,她只想独占,不想同众人分享。
  所以,靳相君眼里划过一丝遗憾和不开心,到底不是她的王朝,很多事她不能阻拦。
  而白景书眼底的震惊却是久久未散。
  脑海中,忽地想起前几个月因为学“数”学的脑袋疼,放下狠话,说再不想碰“数”的身影。
  白景书眼神落在场上众人大加赞赏的黎青颜身上。
  眼前之人,真的是…阿言吗?
  第100章
  在场有那细心的监生, 计算了第一场考核中大家所用的时长。
  令人惊奇的是—— ↑返回顶部↑

章节目录